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Static menisci on the outside of cylinders 

By D. A. WHITE? AND J. A. TALLMADGES 
Department of Engineering and Applied Science, Yale University, New Haven, Conn. 

(Received 25 February 1965) 

The Laplace equation for the pressure drop across curved liquid-gas interfaces 
is applied to the solution of the profile of a static liquid meniscus on the outside 
of a wire of circular cross-section. The resulting differential equation is inte- 
grated numerically, an operation complicated by the existence of boundary 
conditions a t  two points making a trial-and-error solution necessary. The accur- 
acy of the solution is substantiated by comparison of computed profiles with 
experiments in which menisci of a blue dye in water are photographed clinging 
to the outside of brass wires, whose diameters lie within the range of technological 
interest. 

1. Introduction 
The authors are studying the films of liquids adhering to cylinders withdrawn 

from baths of quiescent liquids. A rational theory for the liquid film on a non- 
horizontal flat plate has been given by Landau & Levich (1942). This theory in- 
volves the knowledge of the value of the second derivative of the meniscus profile 
at its highest point on the flat plate. In  order to extend Landau & Levich’s 
theory to wires of any radius it is necessary to have computed profiles of their 
menisci from which the value of the required second derivative can be calculated. 

The profile of the liquid meniscus on a flat plate has been known for some time 
and is given in several textbooks, e.g. Levich (1962). The maximum height of 
liquid on the meniscus and the second derivative at this point are also given by 
Levich. This solution assumes perfect wetting of the solid by the liquid, that is to 
say that the angle of contact is zero. This will be assumed in the subsequent 
development. 

The flat plate profile was derived from the Laplace equation (equation (1) 
below), which may be integrated easily for two-dimensional problems. Cases 
exhibiting axial symmetry present more difficulties. Several solutions are, how- 
ever, presented by Adam (1938); they allow the calculation of precise corrections 
for surface-tension measurements. The profile of a cylindrical meniscus has not 
been calculated previously, although a discussion of the problem appears in the 
work of Bondarenko (1948). 

It is the purpose of this work to predict the profile of a meniscus on a vertical 
wire as a function of wire radius (R) and fluid properties by numerical integration 
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The pressure change Ap is balanced by the hydrostatic pressure due to gravity. 
Thus Ap = - pgx, where p is the fluid density and g the acceleration due to gravity. 
Consequently 

The two boundary conditions are 

d2s/dx2 = [1+ ( d ~ / d x ) ~ ]  [(pgzla) (1 + (ds/dx)2}* + 1/81. (5) 

ds/dx= 0 at x = b, (6) 

and d2s/dx2 -+ co at x = 0. (7) 

The first, (6), represents a zero wetting angle. On the free surface at x = 0, 
s, s’ and S” are clearly infinite so that any one might be used for the second 
boundary condition. Since numerical integration showed that s” > s’ > s 
as x -+ 0, the second derivative was chosen for the second boundary condition 
and was used as a criterion of the approach of the solution to infinity. These 
boundary conditions constitute a ‘two-point ’ problem (Hamming 1962, p. 219), 
adding further complexities to the problem. 

Equation ( 5 )  can be made dimensionless by use of a liquid property, the capil- 

(8) 
lary length a, where 

Defining dimensionless co-ordinates X = ./a and S = s/a, equation (5) becomes 

(9) 

a = (2alpg)k 

d2S/dX2 = [1+ (dS/dX)’] [2X{1+ (dS/dX)’)++ 1/27]. 

The two point boundary conditions (6) and (7) can be written in dimensionless 
form 

dSjdX = 0 at X = B, (10) 

d2S/dX2 -+ m at X = 0, (11) 

where B = bla, the normalized maximum height. Using the dimensionless 
wire radius of Gutfinger & Tallmadge (1964), Go = R/a, the co-ordinates of the 
point on the highest part of the meniscus (x = b at s = R in figure 1) are 

X = B at S = Go. (12) 

(13) 

By differentiation of (9), and substitution of dSldX = 0, we obtain the value of 
the third derivative at B,  which is 

At this point dS/dX = 0; consequently (9) becomes 

(d2S/dX2), = 2B + l/Go. 

(d3S/dX3)B = 2. (14) 

The expressions (9) to (14) give us the equations, boundary conditions and 
derivatives in the form in which they are used in the subsequent numerical 
integration. However, before describing this integration a special case of 
equation (9) should be mentioned: the flat plate, where R+m or Go+m. 
In  this case we have S + 00 for all portions of the meniscus and equation (9) 
becomes, where H = (s  - R)/a,  

d2H/dX2 = 2X{ 1 + (dH/dX)2)%. (15) 
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dHldX = 0 at X = 1,  (16) 

and the second remains as (11). The equation may be integrated twice to give 
the meniscus profile as 

H = 2-*~0sh-~[(,/2)/X]- (2-X)*+0*377,  (17) 

which is given by Landau & Lifshitz (1959). The case where the contact angle 
is not zero is also discussed by Landau & Lifshitz (1959). 

I 
FIGURE 2. Trial-and-error solution. 

2.2. Numerical integration 

A t  the start of each integration (at X = B),  the meniscus profile and derivative 
was approximated by a Taylor series solution using expressions (lo), (12), ( 13) 
and (14). Thus 

where f is the step size and n the number of steps before B. The integration pro- 
cedure used is the ‘one half’ formula given by Hamming (1962, p. 207). 

In  order to start an integration using (18) the value of both Go and B are 
required. However, B as a function of Go is not known a priori, in consequence 
it has to be determined by a trial-and-error solution. In  any case the value of B 
will be less than that for the case of a flat plate where B = 1. The trial-and-error 
solution is illustrated in figure 2. For a given Go a value of B is guessed and the 
numerical integration can then be started. If the value of B is too large, the 
computed profile will take the form shown by curve AA‘, with d2S/dX2 -+ 03 

X = Go + 4n2f2[2B + l/G,] + 4n3f 3, (18) 
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before X = 0. This second derivative was assumed infinite when its value had 
exceeded 108. On the other hand, too small a guess will result in the computation 
of curve CC’ which reaches X = 0 before d2S/dX2 -+ a. An iteration procedure 
based on these two tests was incorporated in the computer programme to 
adjust the value of B until the resulting value of B was determined to a required 
degree of precision. Thus (S ,  X )  profiles were determined simultaneously. Further 
details are available elsewhere (White 1965). 

2.3. ProJles and curvature 
Values of B for given Go are given in table 1. They were determined to within 
f 0.0005, which was the criterion used for terminating the B-iteration, but are 
subject to truncation errors from various causes such as the series approximation 

1 -2 

1.0 

0.8 

0-4 

0 2  

0.0 

0 * 

0 0.2 0.4 0.6 0.8 1.0 
Go(= R l 4  

FIGURE 3. The effect of wire radius on maximum height; theory. 

at the start, the second-derivative stop-criterion, or the step size. As shown in 
the plot of B vs Go (figure 3), the maximum height approaches the flat plate value 
as expected (i.e. B -+ 1 as Go -+ co) and tends to vanish as the radius of the wire 
approaches zero (i.e. B + 0 as Go -+ 0). 

The values of B can be estimated using the following semi-empirical formula 

BE = 2-4Gy5/( 1 + 2-4GtS5), (19) 
which holds to within 5 1% of the computed values in the region 0.03 < Go < 3.0, 
which is the region of technological interest for withdrawal (Tallmadge, Labine & 
Wood 1965). The form of equation (19) was suggested by the shape of figure 3, 
which has the appearance of the Langmuir isotherm, B = mGo/(l +mG,). 
Rearranging this, we have {B/( 1 - B)) = mG,; a plot of log {B/( 1 - B))  vs log Go 
resulted in a straight line whose slope was 0.85. 

The error in B consequent on using formula (19) is given in table 1. The 
formula gives results that are too large a t  Go > 3 and too small at Go < 0.03. 



330 D. A .  White and J .  A .  Tallmadge 

Once the maximum height has been determined as a function of Go, the curva- 
ture, C, at the upper part of the meniscus may be calculated using equation (13); 
such values are given in table 1. 

Substituting the value of BE given by (19) into (13), we obtain the semi- 
empirical formula 

The last column of table I indicates that the error introduced by using equation 
(20) is 1 % or less for Go < 3.0. 

7 

Wire radius 
Go or 
Rla 
0.006 
0.01 
0.03 
0.06 
0.1 
0.2 
0.3 
0.4 
0.6 
1.0 
3-0 
6.0 

10.0 
30.0 
co 

Maximum height 
A 

\ 

Deviation of 
BE values of 

Height (19) 
B or b/a (BE-B)/B (%) 

0.036* - 10 
0*050* - 9  
0.110 0 
0.180 0 
0-252 0 
0.381 - 1  
0-468 - 1  
0.532 0 
0.61 8 - 1  
0.713 - 1  
0-847 1 
0.889* 3 
O.H(l7* 4 
O.Y26* 6 
1 a000 0 

Curvature at maximum height 

Deviation of 
Curvature, C, values of 
from (13) (20) 

166-7 0 
100.0 0 
33.55 0 
17.03 0 
10-50 0 
5.762 0 
4.269 0 
3.564 0 
2-803 0 
2.426 - 1  
2.027 1 

r A 
\ 

C = (d2S/dX2)B (CE-C) /C(%)  

- - 
- - 
- - 

2.000 0 

* Not described, within 1 yo, by the semi-empirical expression (19). 

TABLE 1. Predicted effect of wire radius on maximum height and curvature 

Prediction of the curvature, C, is one of the main purposes of this work. Thus 
it is noteworthy that (20) is accurate, both in the limit for two special cases (for 
small wires of Go + 0 where CE -+ l/Go, and for flat plates of Go + 00 where CE -+ 2) 
and in one of the regions of approach to  the limit (for small wires of Go + 0). 
The only region where (20) does not describe C within 1 yo is that for which dy- 
namic film thicknesses can be represented precisely by flat plate expressions 
(Van Rossum 1958). Even in this region of 3 < Go < 00, the maximum difference 
between CE and C is 5 %; this maximum occurs near Go = 30. 

There are at least eight dimensionless forms for presenting the static meniscus 
profiles at constant Go. These possibilities arise since thickness may be expressed 
either as s or (s - R)  and since both thickness and height x may be made dimen- 
sionless using either a or b (capillary length or maximum height, respectively). 
The most convenient form for interpolation purposes was found to be (s - R)/a 
vs xlb, or H vs X / B  in dimensionless notation. The (s - R)  form is better than s 
for comparison with flat plate results and b is better than a for making height 
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dimensionless since distances are normalized when b is used. Comparison of 
plots of (s- R)/a and (s- R) /b  (both vsxlb)  indicated that the a form brought 
the profiles cIoser together. 

Computed values of static meniscus profiles are shown in table 2 and figure 4 
as H = H ( X / B ,  Go). These values, expressed at even increments of X / B ,  were 
obtained from the computed output (s/a vs x/a) by smoothing calculated values 

- 

- 

- 

- 

- 

0.2 - 
GO= 0.03 0.10 0.3 1.0 10 O0 

0.1 I I I I I I I I 
0.0 01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Dimensionless film thickness, H = (s - R) ja 

FIGURE; 4. Theoretical profiles in the X / B  vs H form. 

G,(R/a) ... . 0.03 0.10 0.30 1.0 10.0 
B(b/a) ... 0.110 0.252 0.468 0-713 0.907 

1.0 0.0 0.0 0.0 0.0 0-0 
0.9 0.003 0.005 0.006 0.008 0.009 
0-8 0.008 0.015 0.019 0.027 0.036 
0.7 0.022 0.039 0.050 0,067 0.084 
0.6 0.044 0.076 0.097 0.122 0.154 
0.5 0.078 0.126 0.163 0.200 0.247 
0.4 0.136 0.197 0.253 0.312 0.382 
0.3 0.226 0.321 0.390 0.462 0.560 
0.2 0.380 0.494 0.590 0.693 0.817 

* This column is equivalent to values from equetion (17). 

TABLE 2. Static meniscus profiles. Values of H = (s-R)/a 

XIB, or x/b 

00 

Flat plate* 
1.000 

0.0 
0.010 
0.039 
0.087 
0.158 
0.256 
0-388 
0.575 
0.846 
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of H vs X I B  using graphical interpolation. The graph paper was sufficiently large 
and the curves sufficiently smooth for the values of H reported in table 2 to be 
precise to the third decimal place. 

Table 2 and figure 4 indicate that the thicknesses for the flat plate case repre- 
sent the upper limit of those for cylinders. For the lower limit, R --f 0, the 
thicknesses tend to vanish; this is indicated by B + 0 in figure 3 and by figure 4. 

3. Experimental 

meniscus profiles with close-up photographs of actual menisci. 
The calculation was verified experimentally by comparing the theoretical 

3.1. Method 

The liquid used was a 500 mg/l solution of Pontamine Blue Dye in distilled water, 
chosen for its dark colour and water-like properties. Water was used as it has a 
large capillary length and hence comparatively large menisci. Furthermore, 
it  is one of the most sensitive fluids to surfactant agents. A diagram of the 
apparatus is given in figure 5. The liquid was contained in a large cylindrical 

Wire 

19 
Camera 

FIUTJRE 5. Diagram of apparatus. 

vessel about 45 cm in diameter. Its temperature was held at 22.5 ~f: 0.1 "C. The 
meniscus was supported on six brass rods whose diameters varied from &in. 
to $in. (Q, = 0-2 to 1.6). Sizes were chosen by availability, but the Go range 
covered that value at which C -+ 1/G, up to those a t  which thicknesses are similar 
to those of flat plates. The wire diameter was measured to a thousandth of an 
inch with a micrometer, the wires having been cleaned with chromic acid and 
distilled water to insure a clear wetting surface. 

The capillary length a was determined by measuring the height of the liquid's 
rise in a glass capillary, the radius of which (0.0265cm) was determined by 
calibration with benzene having a = 0.257cm. This is a direct method for 
measuring capillary length. The value of 0-382 f 0.001 cm was obtained. Lange 
(1961) gives the following properties for pure water at 22.5 "C: p = 0.9977 g/cm3, 
v = 72*36dyn/cm, and g in north-eastern United States = 980.1 cm/sec2. These 
values give a value of 0.384 cm for the capillary length of pure water, compared 
with 0.382 cm measured for the dye solution. The closeness of these values indi- 
cated that there were no impurities in the dye solution. 
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The glass vessel was purposely overfilled with liquid to give a clear line of 
sight for the camera. A small capillary lip of liquid prevented the excess from 
draining down the sides of the vessel. The 35mm camera was a single-lens 
‘Cannon flex’ reflex camera, fitted with extension bellows on which a 45mm 
‘Elmar’ enlarger lens was mounted. Care was taken to mount the camera 
horizontally; this was done using a bubble level. 

The negatives were magnified in an enlarger and the profile of meniscus and 
wire was traced on paper. A typical photograph is given in figure 6 (plate 1). 
An interesting characteristic of these shots is the existence of a reflexion of the 
meniscus which was formed by the liquid free surface. This image enables the 
position of the liquid free surface, which X = 0, to be determined from this picture 
with good accuracy. The precise scale of the enlargement was determined by 
measuring the width of the image of the wire. 

Since lengths on the tracing were measurable to k 0-025 em and the magnifica- 
tion was about 21, precision in the measured values of ( s -  R) and x was about 
k 0.0012 em. Measurements of the values of maximum height were not as 

precise due to larger location uncertainties. 
Image lengths were converted directly into dimensionless co-ordinates, 

based on capillary length a,  for comparison with theoretical calculations. Since 
the actual width of the wire in dimensionless co-ordinates is 2 Go, the scale of the 
enlargement is thus one centimetre to (2G,,,/width of image) dimensionless lengths. 
Consequently the co-ordinates of points on the meniscus were determined by 
multiplying measured lengths by the constant scale factor. Since, on the average, 
the scale of the tracings was about 1 em to 0.1 dimensionless lengths, the lengths 
were precise to about k 0-0025 dimensionless co-ordinates ( H  and X), assuming 
that there were no other errors introduced in tracing and measuring the CO- 

ordinates. Further details are available elsewhere (White 1965). 

3.2. Results and discussion 
Experimental maximum heights for the six wires studied are compared with 
theory in dimensionless B form, as shown in table 3. The theoretical values, 
both of height and of the profiles presented below, were determined by numerical 
integration for the Go numbers given in table 3; however, B values calculated 
from equation (19) and H values interpolated from table 2 are equivalent. 

If the profile data were plotted as X / B  vs H ,  as in figure 4, there would be 
considerable crowding and overlapping of the data for each wire in the 0.2 to 
1.7 range of Go studied. To avoid overlapping, experimental meniscus profiles 
are compared with theory in X vs S form (see figure 7). No experimental values of 
curvature a t  the maximum height were calculated since determinations of such 
second derivatives from data would be extremely sensitive to random error. 
It was felt, however, that confirmation of theoretical profiles and heights would 
imply the validity of curvature values predicted. 

Replicate profile runs are plotted in figure 7 for each of the three largest wires 
to indicate reproducibility of results. The reproducibility with the wires of 
Go = 1.65 and 0.616 is well within experimental precision and is very good, but 
one of the triplicate runs for the wire of Go = 0.830 is not so satisfactory. 
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As shown in figure 7, the theory predicts profiles which agree very closely with 
experiment for the largest and the two smallest wires (Go = 1.65, 0.319, and 
0.204) but deviates from the experimental values in the case of the two other 
wires. This deviation is especially noticeable at the lower part of the meniscus 
where differences as large as 0.007 dimensionless co-ordinates are noted. How- 

07 

Wire ,- 
no. 

1 
2 
3 
4 
5 
6 

7 Go = 1.65 
Go = 0.830 I - - 

Wire radius 
7 --A- 

R(om) Go(Rla) 
0.079 0.204 
0,122 0.318 
0.156 0.403 
0.237 0.616 
0.319 0.83 
0.632 1.65 

0.8 I I I I I 

GO=O.616 , 
- 
- 

\ - 
k 

0.5 - 
0.204 

\ 
Q 

8 
- 

\\ 

0.4 - 

- 
% ' '. 

%--.. - 
0- 

01 - b. 

I I I I I 

0 0.5 1.0 1-5 2.0 2.5 

Maximun height, B = b/a 

Theory Experiment 

0.383 0.395 
0.475 0.50 
0.507 0-52,0*53 
0.612 0-615, 0.595 
0.670 0.65, 0-65, 0-68 
0.785 0.80, 0-83 

* r -7 

3.0 

TABLE 3. Maximum heights 

ever, at the higher region of the meniscus, the theoretical lines for these two wires 
(Go = 0.616 and 0.830) tend towards the experimental points. In  addition, a 
good estimate of maximum meniscus height B was given from the photographs 
for the two wires under discussion. 

Since the profile of the meniscus is tangential to the wire at its upper point, 
the position of this point and the meniscus height B are difficult to measure 
precisely from the photographs, The meniscus-calculated values for these 
two wires further substantiate the accuracy of the computations described 
previously. 
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The deviations that are observed from theory are more marked a t  the lower 
portions of the meniscus, where the actual contrast and sharpness of the interface 
(figure 6, plate 1) is not very satisfactory. This lack of contrast is believed to 
explain the deviations observed in some of the runs but the reasons for this are 
not clear. It is possible that some optical effect causes light to be bent round 
the lower parts of the meniscus. An alternative explanation for lack of contrast 
towards the lower part of the meniscus may be vibration of the liquid interface 
from external sources although this was never observed visually. Nevertheless, 
it is felt that such deviations between theory and experiment that exist do not 
invalidate the generality of the computation described in the paper. 

Furthermore, there is no reason to suspect that other fluids will deviate from 
the predicted values, unless they deviate from the assumptions of perfect wetting 
or zero contact angles. 

The main contribution of this work has been the presentation of a calculation 
of meniscus profiles on the outside of circular wires. The calculation has enabled 
the maximum height (B)  and the curvature at the highest point (C) to be given 
as a function of Go [equations (19) and ( Z O ) ] .  The validity of the computation 
has been verified by experiment for 0.2 -= Go < 1.7, which is within the region of 
technological importance of 0.03 < Go < 3. Due to the greater importance of 
the l/Go term in equation (20) at low Go, it is felt that equation (20) will be valid 
right down to Go -+ 0; and that any errors in B will not greatly affect the estimation 
of GE. The work is limited to menisci of liquids which wet the surface perfectly 
and have a contact angle of zero, and which have surfaces free of surface active 
impurities. 
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